Direct calculation of the electrode movement Jacobian for 3D EIT

نویسندگان

  • Camille Gómez-Laberge
  • Andy Adler
چکیده

Electrical Impedance Tomography (EIT) of media with deformable boundaries is very sensitive to electrode movement. This is especially important for EIT images of the thorax, which become distorted with breathing and posture change. Previously, we proposed a reconstruction method for imaging conductivity change and electrode movement based on an indirect perturbation Jacobian calculation, involving the re-computation of the forward solution. Although suitable for 2D and small 3D imaging, the reconstruction accuracy of this method gradually decreases, while the computation time grows rapidly for large 3D problems. We propose an efficient, novel method of calculating the Jacobian matrix directly from the Finite Element Method (FEM) system equations, without the re-calculation of the forward solution. The implemented algorithm is based on asymmetric rankone perturbations of the admittance matrix. We show that the measurement sensitivity calculations, due to the displacement of each electrode, reduce to operations on small submatrices of the FEM system matrix. The proposed algorithm is applied to simulated data using 3D FEM reconstruction models of various element densities. The computation speed and the reconstruction fidelity are compared between the proposed and previous methods. Keywords—electrical impedance tomography, electrode movement, inverse problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Direct EIT Jacobian calculations for conductivity change and electrode movement.

Electrical impedance tomography (EIT) is very sensitive to deformations of the medium boundary shape. For lung imaging, breathing and changes in posture move the electrodes and change the chest shape, resulting in image artefacts. Several approaches have been proposed to improve the reconstructed images; most methods reconstruct both the boundary deformation and conductivity change from the mea...

متن کامل

Imaging of conductivity changes and electrode movement in EIT.

Electrical impedance tomography (EIT) attempts to reconstruct the internal impedance distribution in a medium from electrical measurements at electrodes on the medium surface. One key difficulty with EIT measurements is due to the position uncertainty of the electrodes, especially for medical applications, in which the body surface moves during breathing and posture change. In this paper, we de...

متن کامل

Tracking boundary movement and exterior shape modelling in lung EIT imaging.

Electrical impedance tomography (EIT) has shown significant promise for lung imaging. One key challenge for EIT in this application is the movement of electrodes during breathing, which introduces artefacts in reconstructed images. Various approaches have been proposed to compensate for electrode movement, but no comparison of these approaches is available. This paper analyses boundary model mi...

متن کامل

A Nodal Jacobian Inverse Solver for Reduced Complexity Eit Reconstructions

Electrical impedance tomography (EIT) uses surface electrodes to make measurements from which an image of the conductivity distribution within some medium is calculated. Calculation of conductivity solutions requires inverting large linear systems that have to date restricted reconstructions to 2D or coarse 3D domains. This paper presents a Nodal Jacobian Inverse Solver that scales with the num...

متن کامل

Correction of electrode modelling errors in multi-frequency EIT imaging.

The differentiation of haemorrhagic from ischaemic stroke using electrical impedance tomography (EIT) requires measurements at multiple frequencies, since the general lack of healthy measurements on the same patient excludes time-difference imaging methods. It has previously been shown that the inaccurate modelling of electrodes constitutes one of the largest sources of image artefacts in non-l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007